Advancing Drug Development: Strategies for Prolonging Drug Half-Life

Advancing Drug Development: Strategies for Prolonging Drug Half-Life

March 28, 2024

The realm of biopharmaceuticals plays a crucial role in modern medical treatment, yet faces significant challenges. A notable concern is the brief half-life of many biopharmaceutical products, leading to swift degradation and clearance from the patient's body, necessitating frequent dosing. This article delves into the ways in which half-life extension strategies in drug development can effectively tackle this issue, enhancing patient convenience and optimizing therapeutic outcomes.

Biopharmaceuticals encompass a diverse array of drugs derived from endogenous peptides and proteins, spanning hormones, enzymes, growth factors, interferons, and antibodies. Despite their immense therapeutic potential, a common drawback is the short half-life of most therapeutic proteins, often lasting mere minutes to a few hours. This necessitates frequent administration, posing challenges for patients and potentially exacerbating symptoms if doses are missed. Extending the plasma half-life of these drugs holds the key to prolonging dosing intervals, easing patient burden, and elevating their overall quality of life, especially for those with chronic diseases requiring lifelong treatment.

Several strategies contribute to the extension of drug half-life in the realm of drug discovery and development. These include polymer conjugation, bioactive natural protein conjugation, carbohydrate modification, and sustained-release drug delivery systems.

Bioactive natural protein conjugation, gaining popularity due to reduced toxicity, includes well-established technologies such as albumin conjugation. This technique is widely employed in numerous protein drugs available in the market. The Fc-Fusion technology, applicable to various therapeutic proteins, has shown positive effects on half-life extension, therapeutic efficacy, and physical properties.

The Fc fusion strategy entails utilizing the Fc portion of immunoglobulin G (IgG) molecules to prolong the circulating time and bioavailability of biopharmaceutical products. Analytical tools are essential for characterizing these structurally complex and heterogeneous Fc fusion proteins, confirming primary structure, assessing post-translational modifications, and evaluating physicochemical attributes.

Sustained-release drug delivery systems aim to extend a drug's presence in the body by controlling its release rate. This is achieved through encapsulating the drug within carriers, such as particles, films, and gels. Nanoparticle-based systems and lipid-based systems play pivotal roles in modulating the pharmacokinetics and pharmacodynamics of therapeutic agents, gradually releasing the drug into circulation and protecting it from enzymatic hydrolysis.

By controlling drug release rates and leveraging the stability of the Fc portion, these innovative strategies offer promising avenues for extending drug half-life, enhancing therapeutic efficacy, and improving the overall drug administration experience for patients. These advancements mark significant progress in the biopharmaceutical field, providing patients with more durable, convenient, and effective treatment options for the future.

Leave a Reply

Related Products

You Might Like Also

New Alzheimer's Disease Drug Receives Full FDA Approval

On January 6, 2023, lecanemab (trade name Leqembi), an Alzheimer's disease drug developed by Eisai and Biogen, received conditional approval from the FDA. The results of its Phase 3 clinical trial showed that the drug slowed cognitive decline in Alzheimer's disease patients by 27%. The FDA has conducted a further review of the clinical trial results to determine whether the drug can be fully approved. Read More

ADCC/CDC Enhancement in Therapeutic Antibody Development

Therapeutic antibodies, engineered through biotechnology, represent a specialized class of antibodies used in disease treatment. These antibodies are designed to target specific disease markers, such as malignant tumors, autoimmune disorders, and infectious diseases. Compared to traditional antibody therapies, therapeutic antibodies offer higher specificity and fewer side effects. Read More

Summer's Invisible Killer—Mosquitoes

As summer unfolds in the year 2023, people will contend with not only scorching temperatures but also the constant annoyance of mosquitoes buzzing around and biting at every opportunity. The combination of high temperatures and factors such as food spoilage creates an ideal breeding ground for mosquitoes, making them a prominent threat during the summer months. Read More

Novel Therapies Based on Small-Molecule Antibodies Hold Immense Promise

Antibodies, the extraordinary proteins that serve as the frontline troops of the human immune system, have recently gained attention for their ability to combat tiny compounds known as haptens. Because of their small size, these elusive targets present particular difficulty for the immune system to identify as foreign invaders. However, researchers' inventiveness has resulted in the creation of several techniques to bypass this barrier and unleash the full potential of hapten antibodies. Read More

Navigating the Post-Pandemic Era: Optimizing SARS-CoV-2 Antibody Responses

The COVID-19 pandemic, which emerged at the end of 2019, may have receded from public consciousness, but its impact continues to reverberate. Over the past three years, countries worldwide have grappled with multiple waves of widespread infection. Although many nations have now established immunity barriers, the risk of long COVID symptoms and recurrent infections still looms large. Such repeated infections could have a profound effect on individuals' immune function. Read More

How to Avoid Allergies and Happily Pet Cats

The cat allergy is arguably the saddest development for cat lovers. The moment you come in contact with the cat, you start to sneeze, experience runny nose, itchy eyes, skin rashes, and even have asthma problems. Read More